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Abstract  10 

 Using data from the St. Luke’s site in Meridian, ID (near Boise) during 2006-2017 and a 11 

2017 summer intensive campaign, we investigate enhancements in ozone (O3) during wildfire 12 

events in an urban area. We calculate a wildfire criterion based on the National Oceanic and 13 

Atmospheric Administration (NOAA) National Environmental Satellite, Data, and Information 14 

Service (NESDIS) Hazard Mapping System (HMS) smoke product and historically averaged 15 

PM2.5 data to determine when wildfire emissions are influencing the area (smoke vs. non-smoke 16 

events). We also use a Generalized Additive Model (GAM) to investigate anomalous sources of 17 

O3, such as wildfires, in this urban area. During the summer 2017 intensive campaign, we find 18 

that peroxyacetyl nitrate (PAN), reactive nitrogen (NOy), and maximum daily 8 hour average 19 

(MDA8) O3 show significant enhancements during smoke events compared with non-smoke 20 

periods (56%, 41%, and 29%, respectively). We calculate the 95% confidence interval of 21 

∆PM2.5/∆CO, ∆NOy/∆CO, ∆PAN/∆NOy, and ∆PAN/∆CO enhancement ratios (ERs) to be 0.129 22 

– 0.144 µg/m3/ppbv, 0.018 – 0.022 ppbv/ppbv, 0.152 – 0.192 ppbv/ppbv, and 3.04 – 3.76 23 

ppbv/ppmv, respectively, for wildfire-influenced events. We also observe an enhancement in O3 24 

production up to PM2.5 concentrations of 60-70 µg/m3 in smoke, after which we see a reduction 25 

in average MDA8 O3 mixing ratios. We use the four highest O3 events during summer 2017 as 26 

case studies to examine the highly variable conditions due to the influence of wildfire smoke in 27 

an urban area. In two cases, we investigate smoke days that show significant O3 enhancement 28 

and moderate PM2.5
 concentrations. These cases suggest that ERs, such as ∆PM2.5/∆CO and 29 

∆NOy/∆CO, are less useful in determining the influence of wildfire smoke in an urban area on 30 

moderate smoke days. Another case shows reduced O3 production during a very high, 3-day 31 

smoke event (PM2.5 > 70 µg/m3). After this high smoke period, a 20 ppbv enhancement in 32 
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MDA8 O3 is observed in moderate smoke. These results indicate that wildfire-influenced O3 33 

enhancements are highly variable in urban areas but generally increase up to around 60 µg/m3 of 34 

PM2.5, after which they decrease at very high smoke concentrations. This study also suggests that 35 

multiple tracer measurements are needed to fully characterize wildfire plumes in urban areas. 36 

 37 

Keywords: Wildfires, Biomass Burning, PAN, Generalized Additive Model, Ozone, 38 

Enhancement Ratios  39 
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1.  Introduction 40 

 Wildfires are a major source of pollution during the summer season in the western U.S. 41 

(Baylon et al., 2015, 2016; Briggs et al., 2016; Hallar et al., 2017; Jaffe et al., 2008a, 2008b; 42 

Laing et al., 2016; Lu et al., 2016; McClure and Jaffe, 2018; Singh et al., 2012; Spracklen et al., 43 

2007; Urbanski et al., 2011; Wigder et al., 2013). Wildfires emit primary pollutants (e.g., 44 

particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx [= NO + NO2]), and 45 

volatile organic compounds (VOCs)) and contribute to the formation of secondary pollutants 46 

(e.g., ozone (O3) and peroxyacetyl nitrate (PAN)) (Alvarado et al., 2010; Briggs et al., 2016; 47 

Jaffe and Wigder, 2012; Lu et al., 2016; Val Martin et al., 2006). It is largely agreed that in the 48 

last few decades, large wildfires in the western U.S. have been increasing in frequency and 49 

duration due to climatological factors and human ignition (Aldersley et al., 2011; Balch et al., 50 

2017; Dennison et al., 2014; Kitzberger et al., 2007; Littell et al., 2009; Miller and Safford, 2012; 51 

Westerling, 2016; Westerling et al., 2006). Recently, it was concluded that as a result of 52 

increasing wildfires, the 98th quantile of PM2.5 is also increasing in the northwest U.S. (McClure 53 

and Jaffe, 2018). Modelling studies also suggest an increased probability of wildfires through the 54 

end of the century (Moritz et al., 2012; Pechony and Shindell, 2010; Spracklen et al., 2009; Val 55 

Martin et al., 2015). With the projected increase in wildfires, it is vitally important to understand 56 

how these emissions affect air quality in urban environments. 57 

 Although pollutants like PM can be emitted directly from wildfires, O3 is formed as a 58 

secondary pollutant through the reaction of NOx and VOCs in the presence of sunlight. Jaffe et 59 

al. (2008a, 2008b) and Lu et al. (2016) show enhancements of O3 and PM during summer in high 60 

wildfire years. However, these enhancements are highly episodic and vary with plume age and 61 

other factors (Alvarado et al., 2010; Jaffe and Wigder, 2012). While most O3 mixing ratios are 62 
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enhanced downwind of a wildfire, some show no enhancement or a depletion in O3 (Akagi et al., 63 

2013, 2011; Alvarado et al., 2010; Baylon et al., 2015; Honrath et al., 2004; Jaffe and Wigder, 64 

2012; Pfister et al., 2006; Val Martin et al., 2006; Verma et al., 2009). This discrepancy in O3 65 

production is likely due to NOx-limiting conditions or possibly aerosol effects enhancing or 66 

reducing photochemical production (Alvarado et al., 2015; Baylon et al., 2018; Castro et al., 67 

2001; Jiang et al., 2012; Palancar et al., 2013). Within the first few hours after emission, 68 

approximately 40% of NOx within a wildfire plume can be rapidly converted to PAN as observed 69 

by Alvarado et al. (2010). PAN is a reservoir species for NOx, meaning, NOx can be stored as 70 

PAN, transported downwind, and then re-emitted as NOx (Fischer et al., 2010). This mechanism 71 

could contribute to the variability of O3 mixing ratios seen downwind of wildfires. The primary 72 

loss process for PAN is thermal decomposition. This suggests that if wildfire smoke is injected 73 

higher into the atmosphere, most NOx could be unavailable for O3 production during transport at 74 

low temperatures while being stored as PAN. However, when this plume descends into a warmer 75 

region, NOx could be released by the decomposition of PAN for a significant enhancement in O3 76 

downwind.  77 

 Due to its effects as an irritant and health hazard, O3 is regulated by the Clean Air Act, 78 

which requires the U.S. Environmental Protection Agency (EPA) to set National Ambient Air 79 

Quality Standards (NAAQS) for the protection of the general public. The primary standard for 80 

O3 requires that the three-year running average of the fourth-highest maximum daily 8-hour 81 

average (MDA8) of O3 be at or below 0.070 ppmv. Kaulfus et al. (2017) found that 20% of O3 82 

exceedances days (MDA8 > 0.070 ppm) occur when smoke is overhead within the continental 83 

U.S. This suggests that wildfires can be a significant contributor to NAAQS compliance for a 84 

region. Camalier et al. (2007) and Gong et al. (2017) also show that Generalized Additive 85 
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Models (GAMs) can be used to determine unusual sources of O3 production. These statistical 86 

models use meteorological and transport variables to determine the variability of O3. They found 87 

that when the modelled O3 values significantly diverged from the observed data (> 95th or 97.5th 88 

percentile), sources of anomalous pollution (either anthropogenic or wildfire) were affecting O3 89 

production.  90 

In urban areas, wildfire emissions can enhance the production of O3 through the addition 91 

of NOx and VOCs (Akagi et al., 2013; Singh et al., 2012). However, in a NOx-rich environment, 92 

such as an urban area, O3 production can decrease at very high NOx mixing ratios (NOx-titration). 93 

In addition, high PM concentrations from wildfire plumes can positively or negatively affect the 94 

production of O3 (Baylon et al., 2018; Real et al., 2007; Reid et al., 2005). These factors lead to 95 

an uncertainty in the effects of wildfire-influenced O3 production in urban areas. We aim to 96 

decipher the role of wildfire emission on O3 production in an urban area routinely affected by 97 

wildfire smoke (Boise, Idaho) to assist in bridging this gap in knowledge. 98 

 The main goal of this analysis is to investigate the role of wildfire emissions on O3 99 

production in an urban area. In order to achieve this goal, we focus on these scientific questions: 100 

(1) What are the characteristic ∆PM2.5/∆CO, ∆NOy/∆CO, ∆PAN/∆NOy, and ∆PAN/∆CO 101 

enhancement ratios (ERs) in urban areas under the influence of wildfire emissions? (2) How do 102 

O3 mixing ratios change with an increase in wildfire PM (smoke)? (3) How can PAN mixing 103 

ratios and/or statistical modeling be used to investigate wildfire-influenced O3 enhancements in 104 

urban areas? To accomplish these goals, we collected PAN measurements at an established urban 105 

monitoring site that was strongly affected by wildfire smoke during summer 2017 (see Section 106 

2.1 for the site description). We developed a wildfire criterion (described in Section 2.4) to 107 

identify when the urban area was being affected by wildfire emissions and calculated ERs for 108 
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“smoke” and “no-smoke” days. We also looked at the effects of PM2.5 on O3 mixing ratios over 109 

10+ years of data at the same site. Additionally, we used PAN measurements made during 2017 110 

and the GAM results for 2007-2017 to improve our understanding of wildfire smoke effects on 111 

O3 in urban areas. 2017 was an exceptionally high wildfire year with the second highest number 112 

of acres burned between 1983 and 2017 (NIFC, 2018).  113 

2.  Methods 114 

 2.1  St. Luke’s Site 115 

The St. Luke’s National Core (NCore) urban monitoring site (43.601 °N, 166.348 °W, 116 

824 m above sea level (asl), AQS code: 160010010) is located in Meridian, Idaho, and is 117 

maintained by the Idaho Department of Environmental Quality (IDEQ). This site is located 118 

directly east of the St. Luke’s Medical Center in Meridian in an empty field and is approximately 119 

10 km WSW of the Boise city center. Atmospheric measurements have been collected at this site 120 

since 2006. This area is strongly affected by wildfire smoke and was shown to be within the 121 

highest region of increasing fine particulate matter (diameter < 2.5 µm [PM2.5]) due to wildfires 122 

by McClure and Jaffe (2018).  123 

The most recent measurements taken at this site include (but are not limited to): CO 124 

[Teledyne API T300U], O3 [Teledyne API T400], sulfur dioxide (SO2) [Teledyne API T100U], 125 

nitrogen oxide (NO) and total reactive nitrogen oxides (NOy [= NO + NO2 + NO3 + N2O5 + 126 

HNO3 + HONO + PAN + …]) [Teledyne T200U], and PM2.5 [Met One BAM-1020]. Hourly data 127 

for these pollutants were provided by the IDEQ for summer 2017. Hourly and daily data from 128 

the St. Luke’s site for 2006-2017 were retrieved from the EPA Data Mart 129 

(https://www.epa.gov/outdoor-air-quality-data). In 2017, we also measured PAN at this site from 130 
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August 1st through September 30th. During this period, 28 of 61 days had wildfire smoke 131 

influence (as described by the daily smoke criterion in Section 2.4). All dates and times listed in 132 

this text are in local standard time (Mountain Standard Time (MST), UTC-7). Further details 133 

regarding measurement specifications and calibration data can be found in the supplementary 134 

information (SI).  135 

2.2  PAN Measurement Description 136 

 PAN was measured using a custom-built gas chromatograph (GC) and Shimadzu Mini-2 137 

Electron Capture Detector (ECD). Measurements of PAN are made at five-minute time intervals 138 

and averaged over an hour to compare with the hourly St. Luke’s data provided during summer 139 

2017. Detailed descriptions of instrument configuration and testing can be found in Fischer et al. 140 

(2010), Flocke et al. (2005), and the SI Sections S2 and S3. During the field campaign, we were 141 

able to achieve an average limit of detection (LOD) of 19.4 pptv and limit of quantification 142 

(LOQ) of 64.5 pptv for PAN. All PAN data collected during the campaign were well above both 143 

limits. Due to the inherently variable sensitivity from this type of instrument, we calibrated three 144 

times (start, middle, and end) during the two-month field campaign to confirm instrument 145 

stability and consistency of measured PAN. Changes in measurement sensitivity are incorporated 146 

into the final calculated PAN mixing ratio to account for any variability in the instrument (see SI 147 

for details).  148 

 2.3  Generalized Additive Model (GAM) Description 149 

 A GAM is used to describe the behavior of the MDA8 O3 mixing ratios based on 150 

meteorological and transport factors at the St. Luke’s site in May through September for 2007-151 

2017 (O3 data at St. Luke’s does not start until 2007). The GAM allows us to model a response 152 
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variable (e.g., MDA8 O3) based on multiple prediction variables (i.e., meteorological and back-153 

trajectory data) that can have both linear and non-linear effects (Wood, 2017). Camalier et al. 154 

(2007) used a similar approach in the eastern U.S. to model O3 based on meteorological variables 155 

and found that this type of model is able to account for the observed variability of O3 mixing 156 

ratios (r2 = 0.56 - 0.80). They also found that the exact function and optimal meteorological 157 

parameters varied by region. Gong et al. (2017) used this approach to characterize the effect of 158 

wildfire emissions on MDA8 O3 in urban areas across the western U.S. By examining the 159 

residuals (difference between observed value and model prediction), they found that these results 160 

can be used to provide information on abnormal sources of O3. In particular, they found that on 161 

days with wildfire smoke influence, the residuals tend to be high, suggesting an abnormal source 162 

of O3 that cannot be predicted by meteorological or transport variables alone (Gong et al., 2017). 163 

 Using methodology similar to Camalier et al. (2007) and Gong et al. (2017), we use 164 

GAM results to inform our discussion of wildfire smoke influence on MDA8 O3 at St. Luke’s. 165 

We compile 18 meteorological and back-trajectory variables to model MDA8 O3 using the 166 

“mgcv” R package (Wood, 2018). The meteorological variables used are a combination of 167 

National Centers for Environmental Prediction (NCEP) Reanalysis data and sounding data from 168 

Boise Airport (KBOI), while the transport variables are calculated using the Hybrid Single-169 

Particle Lagrangian Integrated Trajectory (HYSPLIT) model back-trajectories. A full list of 170 

variables can be found in Table S2. Details about meteorological and back-trajectory data used to 171 

create variables for the GAM can be found in the SI Section S4. We use penalized cubic 172 

regression splines to allow non-linearity with each input variable. We customize the variables for 173 

Boise to improve our fit, while being careful not to over-fit the model by adjusting knots and 174 

examining explanatory values given using the “gam.check” function. We also perform a cross-175 
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validation on the GAM model to evaluate performance (see Table S3). Details about choosing 176 

parameters, evaluation of overfitting, and cross-validation steps can be found in SI Section S4.4.  177 

 2.4  Smoke Criterion 178 

 We use the National Oceanic and Atmospheric Administration (NOAA) National 179 

Environmental Satellite, Data, and Information Service (NESDIS) Hazard Mapping System 180 

(HMS) smoke product and historically averaged PM2.5 thresholds to help identify influence of 181 

wildfire smoke. The HMS smoke product uses multiple visible satellite products to identify the 182 

presence of smoke at a 4 km spatial resolution one or more times a day. Kaulfus et al. (2017) 183 

aggregated HMS data over multiple years and compared this data with ground-based PM2.5 184 

concentrations. From this, they found that PM2.5 concentrations on HMS-classified smoke vs. 185 

non-smoke days have a statistically significant difference, but that the HMS product alone does 186 

not always correlate with enhanced PM at the surface. This is because the HMS product does not 187 

distinguish between smoke at the ground-level or aloft. Nonetheless, it is still a useful tool in 188 

identifying days when wildfire emission might influence pollutants at the surface (Kaulfus et al., 189 

2017). Therefore, we use the HMS smoke product results directly over the St. Luke’s site to help 190 

determine the influence of wildfire smoke. 191 

 In addition to the HMS criteria, we also examine historical PM2.5 concentrations for 192 

2006-2017 at St. Luke’s. To be certain that wildfire emissions are likely affecting conditions at 193 

St. Luke’s, we set our PM2.5 criteria to the historical daily PM2.5 mean (averaged by month) + 194 

one standard deviation (σ). Daily (24-hour averaged) PM2.5 concentrations are compared to these 195 

monthly PM2.5 thresholds, which are shown in Table S4. For the hourly PM2.5 criterion, we use 196 

averaged PM data for 11-17 MST. Figure S2 shows average diurnal PM profiles at St. Luke’s for 197 

2006-2017 on smoke and non-smoke days, as defined by the HMS smoke product. We find that 198 
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regardless of smoke designation, mobile emissions and boundary layer effects contribute to 199 

increases in PM during the early morning and late evening. For this reason, we choose to average 200 

PM values for 11-17 MST, when PM is less likely to be affected by changes in traffic and 201 

boundary layer effects and when O3 is typically highest. This time period also corresponds to the 202 

daily HMS product, providing increased confidence in our smoke or non-smoke designation. 203 

From this, the hourly PM2.5 criterion is calculated to be 13.6 µg/m3 (5.7 + 7.9 µg/m3) using 2006-204 

2017 data for 11-17 MST during August and September. We use these months to calculate the 205 

hourly PM2.5 criterion to better compare with the 2017 campaign data. 206 

“Smoke” days are defined when both the HMS product shows overhead smoke and the 207 

PM2.5 concentration is above the designated (hourly or daily) PM2.5 criterion. “Non-smoke” days 208 

are considered all other cases (only one criteria met, or none). For hourly data, each hour is 209 

evaluated against the hourly PM criterion concentration. For daily data, each day is evaluated 210 

against the respective daily PM criterion concentration for that particular month. 211 

 Because the HMS smoke product is characterized via visible imagery and compiled 212 

manually, the product is advertised as a conservative estimate of smoke boundaries that can be 213 

attributed to a fixed source (Rolph et al., 2009). Additionally, smoke plumes can be obscured by 214 

clouds and hard to distinguish from haze and surface features.   Therefore, it is likely that some 215 

days show a false negative HMS designation for smoke overhead and our smoke criteria would 216 

not be triggered. The calculated PM thresholds for smoke vs. non-smoke conditions may also 217 

exclude some smoke days with low PM2.5 concentrations. Caveats to both parts of the smoke 218 

criterion suggest that the days and hours with smoke present may be misclassified as “no 219 

smoke”.   Thus our wildfire smoke influence should be considered a lower limit.  Also, the HMS 220 

product does not distinguish between wildland fires and prescribed burning. 221 
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 2.5  Enhancement Ratios (ERs) 222 

 We calculate ERs for ∆PM2.5/∆CO, ∆NOy/∆CO, ∆PAN/∆NOy, and ∆PAN/∆CO using 223 

hourly summer 2017 data at St. Luke’s. These values are obtained by taking the reduced major 224 

axis (RMA) regression of two species, with either CO or NOy on the x-axis. Yokelson et al. 225 

(2013) notes that while ERs can be powerful tools to examine different types of pollution 226 

phenomena (e.g., wildfire emissions vs. anthropogenic emissions), small changes in these species 227 

during mixing with background air can cause significant changes in the calculated ER. This is 228 

especially problematic for measurements of plumes that have been transported for more than a 229 

day or when the absolute enhancements are relatively small. Therefore, when comparing our 230 

calculated ERs with literature values, we consider variability in source emissions and mixing as 231 

possible contributors to uncertainty. 232 

3.  Results and Discussion 233 

 3.1  Summer 2017 Summary Data 234 

 Figure 1 shows a typical HMS profile over the northwest U.S. during summer 2017. 235 

According to aggregate HMS product analyses done by Brey et al. (2018) and Kaulfus et al. 236 

(2017), smoke is frequently seen over Boise. For 2017, Boise had 42 days (out of 61) with HMS 237 

smoke overhead between August 1st and September 30th. Additionally, Boise is in an area of 238 

increasing PM2.5 due to wildfires (McClure and Jaffe, 2018). This makes Boise an ideal location 239 

for studying the effect of wildfire smoke in an urban area.  240 

During the 2017 campaign, the St. Luke’s site exceeded the NAAQS O3 standard three 241 

times (out of 61 days), while the White Pine site had 10 exceedance days (out of 44 days). The 242 

White Pine site O3 mixing ratios are typically enhanced compared with St. Luke’s due to its 243 
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Figure 1. Typical Summer 2017 HMS Smoke Product   A typical summer 2017 HMS 
product map (August 19th) over the northwest U.S. is shown with individual fires and smoke 
designation in green, yellow, and red. The designations correspond to the HMS estimated 
smoke densities of 5, 16, and 27 µg/m3, respectively. The St. Luke's and White Pine 
monitoring sites are near Boise, ID.  
 
location downwind of most mobile and industrial emission sources, which emit O3 precursors, in 244 

the Boise area (Kavouras et al., 2008). Throughout the U.S., 2017 had the second most acres 245 

burned (less than 1% difference in area burned with record year – 2015) with approximately 68% 246 

of the area burned in the western U.S. (NIFC, 2018). Due to the location of Boise, ID, we were 247 

able to sample the effect of wildfire smoke in an urban area during one of the highest fire years 248 

on record.  249 

Table 1 shows summary statistics for pollutants using daytime (11-17 MST) hourly data 250 

during the 2017 summer field campaign at St. Luke’s site. Summary information is split between 251 

“Non-Smoke” and “Smoke” based on the hourly wildfire criterion detailed in Section 2.4.  252 
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Bolded compounds show a statistically significant difference between smoke and non-smoke 253 

periods (p-value < 0.05). All species are shown to be elevated during smoke hours, except for 254 

NO. NOy values are, on average, 41% higher (1.7 ppbv enhancement) during smoke hours, 255 

which implies transport of species crucial for photochemistry into the urban area. PAN mixing 256 

ratios are also 65% higher during smoke hours. The average 24-hour temperature during the 257 

summer campaign was approximately 22 °C (maximum = 38 °C), which corresponds to an 258 

average PAN lifetime of only 2.4 hours (using an average NO2/NO ratio = 2.4 for back-reaction 259 

in polluted areas [NOx > 100 pptv]) (Roberts, 2007; Zhang et al., 2015). This suggests that PAN 260 

is being transported into the area in significant amounts during smoke events and then enters the 261 

warm urban photochemical environment where it will have a relatively short lifetime.  O3 mixing 262 

ratios also show an enhancement of around 13 ppbv during smoke hours. Figure S3 shows the 263 

full diurnal pattern for all compounds listed in Table 1, split between smoke and non-smoke 264 

hours. Even though the diurnal patterns in both smoke and non-smoke cases show influence from 265 

mobile emissions and boundary layer effects in the early morning/late evening, the daytime 266 

enhancements due to the influence of wildfires in the smoke case are clearly visible compared 267 

with the non-smoke case. 268 

Smoke 
Criteria 

PAN  
(ppbv) 

O
3
  

(ppbv) 
PM2.5 

(µg/m3) 
NO  

(ppbv) 
NO

y
  

(ppbv) 
SO

2
  

(ppbv) 
CO  

(ppbv) 
N 

Hours 
Non-
Smoke 0.739 ± 0.387 46.9 ± 13.0 8 ± 5  1.06 ± 0.99 4.1 ± 3.4 0.25 ± 0.15 208 ± 63 225 

Smoke 1.220 ± 0.702 60.3 ± 11.1 34 ± 28 1.00 ± 0.93 5.8 ± 4.2 0.40 ± 0.13 405 ± 210 202 

Table 1. Boise Summer 2017 Summary Data   Daytime (11-17 MST) hourly averages (± 1 σ) for 
“non-smoke” vs. “smoke” periods during summer 2017 (August 1st – September 30th). The smoke 
designation is defined by HMS smoke on that day & hourly PM2.5 ≥ 13.6 µg/m3. For individual mixing 
ratios and concentrations, there were 225 “No Fire” hours and 202 “Fire” hours. Bolded values show a 
statistically significant (p < 0.05) difference between smoke and non-smoke days using a 2-tailed t-test. 
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Figure 2 shows hourly PM vs. CO and NOy vs. CO data during smoke and non-smoke 269 

events. RMA regressions of smoke vs. non-smoke events are used to calculate ∆PM2.5/∆CO and 270 

∆NOy/∆CO ERs based on the slopes. These values can be found in Table 2. In plot (a), smoke 271 

hours for ∆PM2.5/∆CO lie predominately along the smoke RMA regression line (red line). A few 272 

smoke points can be seen at low PM concentrations and high CO mixing ratios, which occurred 273 

during a short rain event. Both regressions show good correlation with few outliers, suggesting 274 

that the respective ∆PM2.5/∆CO ERs characterize the smoke vs. non-smoke regimes well. It 275 

should be noted that below approximately 25 µg/m3 of PM2.5, it is very difficult to discern which 276 

regime ∆PM2.5/∆CO ERs would fall into (smoke vs. non-smoke). In plot (b), non-smoke 277 

∆NOy/∆CO values predominately fall along the non-smoke RMA regression line (black line).  278 

Figure 2. Enhancement Ratios   PM2.5 vs. CO is shown in plot (a) and NOy vs. CO is shown in 
plot (b). Plotted points are hourly data between 11-17 MST for summer 2017 in Boise. “Smoke” 
hours are shown in red triangles. “Non-smoke” hours are shown in black circles. The smoke 
designation is defined by HMS smoke on that day & hourly PM2.5 ≥ 13.6 µg/m3. RMA regression 
lines are plotted for “smoke” and “non-smoke” designations. All RMA slopes are significant to p 
≤ 0.05 with r2 values shown next to the regression lines in the representative colors. Slope values 
associated with these plots are shown in Table 2. 
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Smoke  
Criteria 

∆PM2.5/∆CO 
(µg/m3/ppbv) 

∆NOy/∆CO 
(ppbv/ppbv) 

∆PAN/∆CO 
(ppbv/ppmv) 

∆PAN/∆NOy 
(ppbv/ppbv) 

 No Smoke 
0.071 

(r2 = 0.43) 
(0.064 – 0.079) 

0.055 
(r2 = 0.28) 

(0.049 – 0.061) 
NA 

(r2 = 0.02) 
NA 

(r2 = 0.03) 

 Smoke 
0.136 

(r2 = 0.86) 
(0.129 – 0.144) 

0.020 
(r2 = 0.35) 

(0.018 – 0.022) 
3.38 

(r2 = 0.43) 
0.171 

(r2 = 0.33) 

Laing et al. 
WF Range 0.092 – 0.164 0.045 – 0.075 NA NA 

EPA WF 
Range 0.096 – 0.164 0.010 – 0.048 NA NA 

However, ∆NOy/∆CO smoke points are more variable. In fact, there are a few smoke points that 279 

fall predominately along the non-smoke regression line. It is also possible that some non-smoke 280 

points could in fact be smoke points that might be missed by the HMS product, as discussed in 281 

Section 2.4. This is likely due to high variance in NOy values both in the plume and urban 282 

background air. We agree with the conclusion by Laing et al. (2017) that ∆PM2.5/∆CO typically 283 

shows a significant difference between smoke and non-smoke regimes, while ∆NOy/∆CO 284 

appears to be less reliable in substantiating the influence of wildfire smoke in an urban area.  285 

The ∆PM2.5/∆CO ER in Table 2 for smoke events correspond well with values calculated 286 

by Laing et al. (2017) for eight urban sites across the western U.S. Our ∆NOy/∆CO smoke ER 287 

corresponds well with the EPA wildfire range. However, our values for ∆NOy/∆CO are higher 288 

than those provided by Alvarado et al. (2010), Briggs et al. (2016), and DeBell et al. (2004), 289 

Table 2. Boise Summer 2017 ERs    ∆PM2.5/∆CO, ∆NOy/∆CO, ∆PAN/∆CO, 
and ∆PAN/∆NOy ERs are calculated using hourly data between 11-17 MST 
for summer in Boise during 2017. 95% confidence interval ranges and/or r2 
are shown in parentheses below ERs. The smoke designation is defined by 
HMS smoke on that day & hourly PM2.5 ≥ 13.6 µg/m3. These ERs are 
calculated using RMA regressions shown in Figures 2 & 3. A NA designation 
is inserted when data is too variable to provide a useful ER estimate or not 
available. Laing et al. and EPA Wildfire ER Ranges are taken from Laing et 
al. (2017). 
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which range from 0.003 to 0.015 ppbv/ppbv. We also suggest that background NOy and CO 290 

values in an urban area would contribute to different ∆NOy/∆CO ERs compared with samples 291 

taken in rural areas (i.e., Alvarado et al. 2010; Briggs et al., 2016; DeBell et al., 2004). No smoke 292 

∆NOy/∆CO ERs are also substantially lower than urban values from the literature (range = 0.156 293 

– 0.259 ppbv/ppbv); however, this is likely due to literature values being taken in more polluted 294 

urban areas (i.e., Houston, TX and Hong Kong) where ratios of NOy and CO vary significantly 295 

due to different anthropogenic emission sources (Mazzuca et al., 2016; Wang et al., 2003).  296 

Figure 3 shows PAN-specific ERs in the same style as Figure 2. Table 2 provides the 297 

numerical data associated with Figure 3 for ∆PAN/∆CO and ∆PAN/∆NOy ERs. Smoke-298 

Figure 3. PAN Enhancement Ratios   PAN vs. CO is shown in plot (a) and PAN vs. NOy is 
shown in plot (b). Plotted points are hourly data between 11-17 MST for summer 2017 in Boise. 
“Smoke” hours are shown in red triangles. “Non-smoke” hours are shown in black circles. The 
smoke designation is defined by HMS smoke on that day & hourly PM2.5 ≥ 13.6 µg/m3. RMA 
regression lines are plotted for “smoke” and “non-smoke” designations. All RMA slopes show r2 
values next to the regression lines in the representative colors. Slope values associated with these 
plots are shown in Table 2. 
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influenced ∆PAN/∆CO ERs are consistent with literature values given by Briggs et al. (2016) 299 

(average = 3.34 ppbv/ppmv) and Alvarado et al. (2010) (range = 2.8 – 3.4 ppbv/ppmv). PAN and 300 

CO are uncorrelated on non-smoke days (r2 = 0.02), so an enhancement ratio cannot be derived. 301 

Non-smoke ∆PAN/∆CO ERs cannot be used due to low r2. Similarly, ∆PAN/∆NOy non-smoke 302 

ERs show significant variance and cannot be used reliably. Smoke ∆PAN/∆NOy ERs show a 303 

better correlation but still show variance likely due to variable plume age and processing as it 304 

enters the urban area. The overall smoke ER for ∆PAN/∆NOy shown in Table 2 appears to be 305 

lower on average than literature values (we estimate ~0.41 for Briggs et al. (2016)). However, 306 

this value is for non-urban environments and does not reflect any influence from anthropogenic 307 

combustion sources or higher temperatures at the surface.  Also, the PAN and NOy values 308 

reported by Briggs et al. (2016) were significantly lower than our measurements and the PAN 309 

percentage of NOy in wildfire plumes was much higher (Briggs et al. (2016) 25-57% versus our 310 

average 12.7%) leading to significantly different ∆PAN/∆NOy ERs. It should be noted that while 311 

we report ∆PAN/∆CO and ∆PAN/∆NOy ERs here, these values are very different than the 312 

∆PM2.5/∆CO and ∆NOy/∆CO ERs. While ∆PM2.5/∆CO and ∆NOy/∆CO ERs can be used in most 313 

cases because of their relative stability to determine wildfire or anthropogenic influence, 314 

∆PAN/∆CO and ∆PAN/∆NOy ERs should be much more variable due to plume photochemical 315 

processing, mixing of plume and urban air, and the production of PAN inherent to an urban 316 

environment. We expect that ∆PAN/∆CO and ∆PAN/∆NOy ERs could be used in some cases to 317 

determine the influence of wildfire smoke but would generally be highly variable in an urban 318 

environment. 319 

 Table 3 shows the average daily maximum PAN and MDA8 O3 values during summer 320 

2017 at St. Luke’s and White Pine sorted by daily smoke criteria. Neither PAN nor PM2.5 are  321 
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measured at the White Pine site. To determine smoke vs. non-smoke days at White Pine, we 322 

assume the same daily designation used for St. Luke’s. At the St. Luke’s site, daily maximum 323 

PAN is 68% higher (0.69 ppbv) on smoke days compared with non-smoke days. On average, 324 

MDA8 O3
 values are also enhanced by approximately 32% and 31% on smoke versus non-smoke 325 

days at St. Luke’s and White Pine, respectively. The highest non-smoke day does not exceed the 326 

NAAQS standard for O3 at St. Luke’s, while only one non-smoke day exceeds the standard at 327 

White Pine. On smoke days, the NAAQS is exceeded on three days at St. Luke’s and nine days 328 

at White Pine. This is consistent with the assertion by Kaulfus et al. (2017) that the influence of 329 

wildfire smoke can significantly affect compliance with the O3 standard. 330 

 3.2 Particulate Matter Influence on Ozone Production 331 

 Previously, it has been suggested that PM may have a significant positive or negative 332 

effect on O3 production due to the forward/backward scattering and/or absorption of solar 333 

radiation (Alvarado et al., 2015; Baylon et al., 2018; Real et al., 2007; Reid et al., 2005). To 334 

investigate this assertion, we use historical PM2.5 concentrations versus MDA8 O3 from the St. 335 

Luke’s site during all months for 2007-2017. Figure 4 shows MDA8 O3 binned by 24-hour 336 

Site Smoke? 

Average Daily 
Max PAN  

(ppbv) 

Average 
MDA8 O3  

(ppbv) 

Min 
MDA8 
(ppbv) 

Max 
MDA8 
(ppbv) 

# of 
Days 

# NAAQS 
Exceedance 

Days 
St. Luke’s No 1.02 ± 0.36 44.4 ± 11.9 25 68 28 0 

Yes 1.71 ± 0.66 58.6 ± 9.3 37 75 33 3 
White 
Pine 

No NA 50.9 ± 13.0 22 73 20 1 
Yes NA 66.6 ± 6.7 55 76 24 9 

Table 3. Boise Summer 2017 Daily Statistics    Statistics for daily maximum PAN and MDA8 O3 in 
Boise during summer 2017 are shown. Averages are shown with ± 1σ. The smoke designation is 
defined by HMS smoke on that day & daily PM2.5 ≥ the historical monthly threshold shown in Table 
S4. The daily designation of smoke vs. no smoke from St. Luke's was extended to White Pine 
because PM2.5 concentrations are not measured at White Pine. 
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averaged PM2.5 in the top row and daytime (11-17 MST) averaged PM2.5 in the bottom row. 337 

Days are separated based solely on the HMS designation (no smoke versus smoke overhead). 338 

While this may not explicitly characterize smoke at the surface, Kaulfus et al. (2017) suggests 339 

that we are able to determine when the surface is potentially affected by smoke and shows a 340 

statistically significant difference in surface-level PM2.5 between HMS smoke and non-smoke 341 

days. Specifically at the St. Luke’s site, PM2.5 concentrations for May-September on HMS 342 

smoke and non-smoke days are 14.3 and 7.0 µg/m3, respectively, and these distributions are 343 

statistically different (p-value < 0.01). Based on Figure 4, we determine that MDA8 O3 generally 344 

decreases with increasing PM2.5 on non-smoke days. We suggest that this is due to NOx-titration 345 

of O3 at high PM levels. Figure 5 shows NO binned by 24-hour and daytime average PM2.5, 346 

comparable with of Figure 4, for 2011-2017 at St. Luke’s (NO data is not available before 2011). 347 

These plots show that for non-smoke days, at PM2.5 concentrations above approximately 20 348 

µg/m3, we see significant enhancements in NO mixing ratios compared with smoke days.  349 

 350 

  351 
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  352 

Figure 4. Box Plots of MDA8 O3 binned by PM2.5    All months MDA8 O3 data for 
2007-2017 is split by HMS criteria. Plots (a) and (b) show MDA8 O3 binned by 24-hour 
average PM2.5 (using daily data). Plots (c) and (d) show MDA8 O3 binned by daytime 
(11-17 MST) average PM2.5 (using hourly data). Plots (a) and (c) are periods with “no 
smoke”; plots (b) and (d) are periods with “smoke” according to the HMS smoke 
product only. Each bin includes the designated PM2.5 values ± 5 µg/m3. 
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For MDA8 O3 on smoke days (plots (b) and (d) in Figure 4), we see MDA8 O3 increasing 353 

with increasing PM2.5 up to approximately 60-70 µg/m3. After this point, MDA8 O3 is, on 354 

Figure 5. Box Plots of NO binned by PM2.5   All months NO data (2011-2017) is split 
by HMS criteria. Plots (a) and (b) show NO binned by 24-hour average PM2.5 (using daily 
data). Plots (c) and (d) show NO binned by daytime (11-17 MST) average PM2.5 (using 
hourly data). Plots (a) and (c) are periods with “no smoke”; plots (b) and (d) are periods 
with “smoke” according to the HMS smoke product only. Each bin includes the 
designated PM2.5 values ± 5 µg/m3. 
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average, lower at very high PM2.5 concentrations. This suggests that at sufficiently high PM2.5 355 

concentration, O3 production can be suppressed, likely due to back-scattering of solar radiation 356 

or very young plume age. These observations extend the modelling done by Baylon et al. (2018) 357 

and Alvarado et al. (2015) to higher concentration of PM2.5 and provides important context for 358 

decreased O3 production in urban areas under very high levels of smoke.  359 

 3.3  St. Luke’s GAM Results 360 

Table 4 shows summary statistics from the GAM simulation of MDA8 O3 at St. Luke’s 361 

during May through September for 2007-2017. We use residuals (similar to Camalier et al. 362 

(2007) and Gong et al. (2017)) to identify variations in MDA8 O3 that cannot be predicted by the 363 

meteorological or transport variables(listed in Table S2). Overall, we see a low average and 364 

standard deviation for all residuals in addition to a moderate r2 value. This  365 

suggests that the model was able to fit MDA8 O3 mixing ratios reasonably well given the input 366 

variables. While only 4% of days are classified as smoke days (using the daily smoke criterion), 367 

they show significantly higher residuals than non-smoke days (residuals = 4.93 ppbv vs. 0.00 368 

ppbv, respectively), suggesting that the enhancement in O3 on smoke days is not associated with 369 

standard meteorology or transport variables. The mean smoke day residual for St. Luke’s is 370 

Months 
Used 

Smoke Day 
Residuals 

(ppbv) 

Non-Smoke 
Day Residuals 

(ppbv) 

Residual 
95th 

Percentile 
(ppbv) 

Residual 
97.5th 

Percentile 
(ppbv) r

2 
N 

variables 
May-Sep 4.93 ± 6.89 

(n = 78) 
0.00 ± 5.68 
(n = 872) 9.15 11.4 0.57 15 

Table 4. GAM Summary Statistics   GAM results are shown for the St. Luke’s site during 2007-
2017. Average for smoke and non-smoke day GAM MDA8 O3 residuals are shown with ± 1σ and 
number of data points. The 95th and 97.5th percentiles of the residuals are calculated using non-
smoke day data. The smoke designation is defined by HMS smoke on that day & daily PM2.5 ≥ the 
historical monthly threshold shown in Table S4.  
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slightly larger than the same value (3.2 ppb) determined for Boise by Gong et al. (2017) using a 371 

very similar method.  The most likely cause for this difference is that our values are based on the 372 

non-smoke GAMs, thus this gives the full influence of smoke on the MDA8 O3, whereas in 373 

Gong’s analysis, all days were included in the GAMs.  Figure 6 shows Observed MDA8 O3 374 

versus GAM Fit MDA8 O3 separated by the smoke and non-smoke criteria. Smoke values (in red 375 

triangles) show a higher tendency to be well above or below the 1:1 line. We also calculate 95th 376 

and 97.5th percentile residual values (9.66 ppbv & 11.7 ppbv, respectively) to help identify days 377 

when outside sources (i.e., sources not included as explanatory variables in the GAM) make 378 

significant contributions to MDA8 O3. This can be used to support exceptional event 379 

classification (Gong et al., 2017). Figure S4 shows the GAM smoke residuals plotted versus 380 

∆PM (defined as average monthly, “non-smoke” PM2.5 subtracted from the 24-hour average 381 

PM2.5) for May through September in 2007-2017. This figure shows a similar result compared to 382 

Figure 4, with GAM residuals increasing up to PM2.5 concentrations of approximately 60 µg/m3 383 

then decreasing at very high ∆PM2.5 concentrations. Figure S5 shows the GAM residuals binned 384 

by GAM Fit O3 values. This figure shows that the average residual is approximately zero for 385 

each bin. Additionally, for GAM-predicted O3 values between 60 and 80 ppbv, we find an 386 

average residual of 1.04 ± 3.90 ppbv (n = 13) and 8.12 ± 10.3 ppbv (n = 3), for non-smoke and 387 

smoke days, respectively.  The fact that the smoke residuals are higher at the higher mixing 388 

ratios indicates a tendency for greater smoke impacts on O3 on more photochemically active 389 

days.  390 
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 3.4  Wildfire Smoke Enhanced O3 Events during Summer 2017 391 

 Summary data for the four highest MDA8 O3 events during summer 2017 (August 1st – 392 

September 30th) at St. Luke’s are listed in Table 5. All events were classified as smoke 393 

influenced by the HMS smoke product and daily PM criteria. Three of these days had MDA8 O3 394 

values >0.07 ppm.   ∆PM2.5/∆CO and ∆NOy/∆CO values can be compared with smoke vs. non-395 

smoke ERs in Table 2. GAM residual values should be compared with the 95th and 97.5th 396 

percentile thresholds in Table 4. Table S3 shows data for each day during summer 2017, 397 

comparable with Table 5.  398 

Figure 6. Boise Observed MDA8 O3 vs. GAM Fit MDA8 O3     
Daily May-September for 2007-2017 GAM MDA8 O3 results 
are plotted versus Observed MDA8 O3 for Boise. The smoke 
designation is defined by HMS smoke on that day & daily PM2.5 
≥ the historical monthly threshold. “Smoke” data (n = 78) is 
shown in red and “non-smoke” data (n = 872) is shown in black. 
The black line is 1:1. 
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Table 5. Boise Summer 2017 Wildfire-Influenced Events   Four of the highest O3 events 
occurring in Boise during summer 2017 are shown. August 2nd, 6th, and 27th are single-day 
events. September 5th – 8th is a multi-day wildfire event. ∆PM2.5/∆CO and ∆NOy/∆CO values 
are calculated using data from 11-17 MST. GAM residual values are also provided for 
comparison with Table 4.  

Date 
MDA8 O

3
 

(ppbv) 

24-Hr Avg. 
PM

2.5 
 

(µg/m
3
) 

Daily Max 
PAN  

(ppbv) 
∆PM

2.5
/∆CO 

(µg/m
3
/ppbv) 

∆NO
y
/∆CO 

(ppbv/ppbv) 
GAM Residual 

(ppbv) 
Aug. 2nd 75 18 2.31 0.114 

(r
2
 = 0.21) 

0.067 
(r

2
 = 0.67) 13.2 

Aug. 6th  69 69 2.40 0.223 
(r

2
 = 0.96) 

0.038 
(r

2
 = 0.02) 19.4 

Aug. 27th  72 22 1.32 -0.108 
(r

2
 = 0.00) 

0.039 
(r

2
 = 0.53) 14.0 

Sept. 5th 47 76 2.45 
0.138 

(r
2
 = 0.97) 

0.021 
(r

2
 = 0.61) 

-2.3 
Sept. 6th  51 120 4.14 -4.2 
Sept. 7th  51 87 2.05 -0.8 
Sept. 8th  71 42 3.19 19.1 

August 2nd and 27th show moderate PM2.5 concentrations. Figure 7 shows the event on 399 

August 2nd, 2017 and enhanced O3.   Both days are designated as smoke days due to their 400 

enhanced PM and HMS smoke.  Figure S6 shows the event on August 27th, 2017.  During these 401 

events, ∆PM2.5/∆CO and ∆NOy/∆CO ERs exhibit a wide range of values and some are outside of 402 

the typical wildfire range (as shown in Table 2). While we know that these events are influenced 403 

by wildfire smoke (high PM, O3, back-trajectories identify fires, smoke overhead, etc.), we find 404 

that these ERs have a very wide range during smoke days in an urban area which likely reflects 405 

mixing with urban emissions.  Looking back at Figure 2 (a), it is difficult to distinguish between 406 

smoke and non-smoke ∆PM2.5/∆CO ERs at PM2.5 concentrations below 25 µg/m3. We suggest 407 

that for these events, which both have transport times of one to two days (as estimated by 408 

HYSPLIT back-trajectories); enhancements of PM2.5 are typically low due to cloud processing or 409 

deposition (Wigder et al., 2013). Additionally, Figure 2 (b) also shows that smoke vs. non-smoke 410 
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∆NOy/∆CO ERs are difficult to distinguish at low NOy and CO mixing ratios. We suggest that as 411 

wildfire smoke influence increases, ERs become more useful in determining smoke days from 412 

non-smoke days. 413 

 For these two events, we are able to confirm the influence of wildfire smoke by using the 414 

PM2.5, CO and PAN enhancements and back-trajectories. Back-trajectories for both events (see 415 

Figures S7 & S8) show transport over wildfires in southwest Oregon and northern California. 416 

Figure 7.  August 2nd, 2017 Wildfire-Influenced Event   A moderate 
PM2.5, high PAN and O3 

wildfire-influenced smoke day is shown. PAN, 
O3, and PM2.5 data are shown in blue, orange, and green, respectively. All 
values are hourly averages. Dates and times are in MST. 



28 
 

Along these back-trajectories, temperatures are low enough for the PAN lifetime to be 417 

approximately 1-1.5 days (total transport time ~1.5 days). The air masses then descend into the 418 

warmer boundary layer in the Boise area due to high pressure circulation. This would allow 419 

storage of PAN during transport, then loss of PAN back to NOx as the air mass enters the Boise 420 

area, which could enhance O3 production on these days. Daily maximum PAN mixing ratios are 421 

also consistent with smoke day values shown in Table 1. Additionally, GAM residuals are above 422 

the 95th percentile threshold for both days, suggesting an anomalous source of O3, which we 423 

attribute to the influence of wildfire smoke. At the same time, for moderate smoke days such as 424 

those described, additional data or observations would help confirm the presence of wildfire 425 

smoke. 426 

 Figure 8 shows the time series of a very high smoke event (high PM2.5, O3, PAN, and 427 

CO) observed at the St. Luke’s site during the period of September 6th – 8th, 2017. The HMS 428 

smoke product shows the whole northwest U.S. blanketed in smoke for this entire period. During 429 

the first three days of this event (September 5th – 7th), PM2.5 concentrations are consistently 430 

above 70 µg/m3. During this time, MDA8 O3 values do not appear to be significantly enhanced 431 

and GAM residuals even show a small overestimate of the observed MDA8 O3 (negative values). 432 

However, when PM2.5 concentrations drop below 70 µg/m3 on the fourth day of the event (Sept. 433 

8th), we see a 20 ppbv increase in MDA8 O3. We also see a significant underestimation of 434 

observed MDA8 values by the GAM model, which shows a residual of 19.1 ppbv that exceeds 435 

both the 95th and 97.5th percentile thresholds. This suggests significant anomalous influences not 436 

captured by the GAM model. We assert that during the first three days of the event, PM2.5 437 

concentrations were sufficiently high enough to impede O3 production, consistent with the 438 

conclusions drawn from Figure 4. On the fourth day, PM2.5 concentrations had dropped 439 
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somewhat so that O3 was able to be produced efficiently. This led to an MDA8 O3 value of 71 440 

ppbv. During this event, we observe one to two day transport times via back-trajectories. It is 441 

possible, however, that the low O3 production on September 5-7th is due to the plumes being 442 

fairly young. PAN values peak during the highest smoke concentrations, likely due to wildfire 443 

plume transport into the area. On the fourth day, PAN and O3 increase significantly during the 444 

day due to photochemical production with PAN mixing ratios at almost two times the daily 445 

smoke average. Both ∆PM2.5/∆CO and ∆NOy/∆CO ERs during this multi-day event are clearly 446 

indicative of wildfire smoke. 447 

 In contrast, August 6th shows an example of a high O3 smoke event where the 24-hour 448 

average PM2.5 concentration was 69 µg/m3. While Figure 4 would suggest that we might see a 449 

reduction in O3 production, we actually see an MDA8 O3 level of 69 ppbv. This demonstrates the 450 

complexity and large variability associated with O3 production from wildfire plumes in urban 451 

areas. This contrasting event suggests that the threshold for O3 enhancement and suppression is 452 

uncertain in the range of PM2.5 concentrations between 60 and 70 µg/m3. 453 



30 
 

4.  Conclusions 454 

 During the 2017 intensive campaign at the St. Luke’s site, we determined that all 455 

individual pollutants measured were significantly enhanced during smoke days compared with 456 

non-smoke days, with the exception of NO. Additionally, we found that MDA8 O3 and daily 457 

maximum PAN mixing ratios were 32% and 68% higher on smoke days, respectively. Using 458 

historical data from the St. Luke’s site during 2007-2017, we show that MDA8 O3 decreases 459 

Figure 8. September 6th-8th, 2017 Wildfire-Influenced Event     A 
multi-day high PM2.5, PAN, and O3 wildfire-influenced smoke event is 
shown. PAN, O3, and PM2.5 data are shown in blue, orange, and green, 
respectively. All values are hourly averages. Dates and times are in MST. 
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with increasing PM2.5 on non-smoke days, likely due to NOx-titration. On smoke days, MDA8 460 

O3 increases with increasing PM2.5 up to a threshold (~ 60 – 70 µg/m3), at which point MDA8 O3 461 

is (on average) lower during very high smoke events. We use GAM residual values to determine 462 

anomalous sources of O3 that cannot be predicted by meteorological or transport variables. Based 463 

on these results, we find that smoke day residuals are significantly higher than non-smoke day 464 

residuals. We also investigate four wildfire-influenced, high O3 events. These cases show that 465 

ERs become more useful as smoke concentrations increase, and the threshold between O3 466 

enhancement and suppression for Boise is in the range of 60 – 70 µg/m3. While we identify some 467 

effects on O3 due to wildfire emissions in an urban area, the need for improved classification of 468 

smoke versus non-smoke influenced days will likely become more important throughout the 469 

western U.S. as wildfire frequency and intensity are predicted to increase through the end of the 470 

century. 471 
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